Finite Element Methods with Linear B-Splines

K. Höllig, J. Hörner and M. Pfeil

Universität Stuttgart

Institut für Mathematische Methoden in den Ingenieurwissenschaften, Numerik und geometrische Modellierung (IMNG)

FEM / B-Spline Web-Site (with U. Reif and J. Wipper): http://www.web-spline.de/

Avignon, July 5, 2006

Principal Features

- uniform grid
- one basis function per grid point
- explicit vectorizing expressions for boundary integrals
- fast discretization / linear precision
- small constant band width
- parallel algorithms
- multigrid solvers
- adaptive refinement

applications:

moderately accurate models nonsmooth problems time-sensitive simulations

Finite Element Basis

domain $D \approx D^h$: $w^h(x) > 0$

weighted B-splines $w^h b^h_k, \quad k_\nu \in \mathbb{Z}$

FE Methods with Linear B-Splines

Linear Box-Splines [de Boor, Höllig, Riemenschneider, Springer 1993]

$$\Xi = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad B_{\Xi}(x) = \int_{0}^{1} \chi_{[0,1]^{3}} (x - t(1,1,1)) dt$$

Lagrange basis $b_{k}^{h}(x) = B_{\Xi} (x/h - k), \quad k \in \mathbb{Z}^{3}$

Data Structure

values on grid of bounding box

$$w^{h}(0:k_{1},0:k_{2},0:k_{3})$$

 $p^{h}(0:k_{1},0:k_{2},0:k_{3})$

finite element approximation (Dirichlet boundary conditions)

$$u^{h} = w^{h}p^{h} = \left(\sum_{k} w^{h}_{k}b^{h}_{k}\right)\left(\sum_{k} p^{h}_{k}b^{h}_{k}\right)$$

evaluation on grid tetrahedron S

$$w^h_S imes p^h_S \in \mathbb{R}^4 imes \mathbb{R}^4 \longrightarrow$$
 product of linear functions

Stability [cf. results by Reif and Mößner] and Accuracy

Condition of the basis:

$$\left\|u^{h}\right\|_{0,D^{h}} \asymp \left\|\Gamma P^{h}\right\|_{0}$$

with Γ the diagonal matrix of normalization constants $\gamma_k = \|w^h b_k^h\|_{0,D^h}$.

Approximation order:

$$\left\|u-u^{h}\right\|_{1,D\cap D^{h}} \leq h \left\|u\right\|_{2,D}$$

for a domain D with smooth boundary and $u \in H^2(D) \cap H^1_0(D)$.

Numerical Integration

Ritz-Galerkin integrals

$$\int_{S\cap D^h} a\left(w^h b^h_k, w^h b^h_{k'}\right) = I\left(w^h_S, k, k'\right)$$

intersection patterns

Poisson bilinear form

I : rational function of w_S^h or t_S^h

(automatically generated, 6 * 16 * 10 cases)

K. Höllig et al. (Universität Stuttgart)

FE Methods with Linear B-Splines

Expressions for Ritz-Galerkin Integrals

no intersection, full box, common factor 1/120:

$$24 w_8^2 - 8 w_1 w_3 + 48 w_1^2 + 8 w_5^2 + 24 w_1 w_8 + 8 w_1 w_6$$

-4 w_5 w_6 - 8 w_1 w_5 - 4 w_8 w_6 - 4 w_3 w_4 + 12 w_6^2 - 4 w_5 w_7
+8 w_1 w_7 + 8 w_3^2 - 4 w_4 w_8 + 12 w_4^2 - 4 w_6 w_2 + 8 w_1 w_4
+12 w_7^2 + 8 w_2^2 - 8 w_2 w_1 - 4 w_3 w_7 - 4 w_2 w_4 - 4 w_7 w_8

intersection, one tetrahedron, common factor $w_1^2/120$:

$$-\frac{t_2^2 t_1^2}{t_3} + t_1^2 t_2 - 2 t_1 t_2 t_3 - 4 \frac{t_1^3 t_3}{t_2} - 2 \frac{t_1^2 t_3^2}{t_2}$$

-5 t_1 t_3 + 3 t_1^2 t_3 + 4 t_1^3 - 10 t_1^2 + t_1 t_3^2 - 2 \frac{t_1^3 t_2}{t_3}
+5 $\frac{t_1^2 t_2}{t_3} + 10 \frac{t_1^2 t_3}{t_2}$

K-Form [J. Koch, Dissertation 1995]

sparse polynomial expressions

$$2xy + 3x^2y^2z + \dots$$
$$4x^2y^2z + 5xyz + \dots$$

simplifying quadratic substitutions

$$u = xy$$
, $v = uz$, $w = uv$

 \rightarrow linear expressions

 $2u + 3w + \dots$ $4w + 5v + \dots$

Example of K-Form Substitutions

$$-\frac{t_2^2 t_1^2}{t_3} + t_1^2 t_2 - 2 t_1 t_2 t_3 - 4 \frac{t_1^3 t_3}{t_2} - 2 \frac{t_1^2 t_3^2}{t_2}$$

-5 $t_1 t_3 + 3 t_1^2 t_3 + 4 t_1^3 - 10 t_1^2 + t_1 t_3^2 - 2 \frac{t_1^3 t_2}{t_3}$
+5 $\frac{t_1^2 t_2}{t_3} + 10 \frac{t_1^2 t_3}{t_2}$

15 substitutions

$$-t_{14} + t_{12} - 2t_{13} - 4t_{17} - 2t_{18} - 5t_7 + 3t_{15} + 4t_{10} - 10t_6 + t_{16} - 2t_{11} + 5t_8 + 10t_9$$

substitutions could be used simultanously for all 36 cases of (k, k')

 \rightarrow 27 Substitutions for 315 products for the non-intersection case

K. Höllig et al. (Universität Stuttgart)

FE Methods with Linear B-Splines

Performance

Eigenvalue Problem

$$-\Delta u = \lambda u$$
 in D , $u = 0$ on ∂D

Lanczos method with dynamic multigrid

Computed on Pentium 4 PC, 3.20GHz, 2GB memory

Program Demo

$$-\Delta u = f \text{ in } D, \quad u = 0 \text{ on } \partial D$$

unit disc with random holes dynamic multigrid solver FORTRAN 90 code MATLAB interface for visualization

holes	<i>f</i> = 4		$f = e^x((1+x)\cos y - y\sin y)$	
0	6 grids	8 grids	6 grids	8 grids
2	6 grids	8 grids	6 grids	8 grids
4	6 grids	8 grids	6 grids	8 grids

Next Steps [in cooperation with U. Küster, HLRS]

- porting programs to NEC SX-8 Cluster (72 Nodes with 8 CPUs each)
- large scale tests of the vectorization
- parallel processing of different intersection types
- completion of the 3D implementation
- improvement of automatic algebraic simplifications

```
web-sites:
```

```
http://www.web-spline.de/
http://www.mathematik-online.org/
```

books:

Finite Element Methods with B-Splines, SIAM, 2003 Handbook of Computer Aided Geometric Design, Elsevier 2002