
Parallel Finite Element Methods with

Weighted Linear B-Splines

Klaus Höllig, Jörg Hörner and Martina Pfeil

IMNG, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart Germany,
hoellig@mathematik.uni-stuttgart.de

Weighted extended B-splines (web-splines) combine the computational effi-
ciency of B-splines and the geometric flexibility of standard finite elements on
unstructured meshes. These new finite elements on uniform grids (cf. [5] and
www.web-spline.de) are ideally suited for vectorization, parallelization and
multilevel techniques.

In this project we explore the potential of the web-method for large scale
applications with performance tests on the NEC SX-8 cluster of the HLRS.
We implement a new minimal degree variant which uses predefined instruction
sequences for matrix assembly and is almost as efficient as a difference scheme
on rectangular domains.

1 Introduction

B-splines play an important role in approximation, numerical analysis, au-
tomated manufacturing, and computer graphics. Their use as finite elements
suggests itself. However, in view of missing geometric flexibility and stability
problems, this did not seem feasible. With the web-method, introduced in
2001 and patented in 2003, both difficulties have been overcome. Boundary
conditions are incorporated via weight functions and stability is achieved by
forming appropriate B-spline combinations. The resulting new type of a finite
element basis, consisting of weighted extended B-splines (web-splines), com-
bines the advantages of uniform splines and finite elements on unstructured
grids:

• uniform grid with one basis function per grid point
• arbitrary smoothness and polynomial degree
• high accuracy with relatively few parameters
• exact fulfilment of essential boundary conditions
• hierarchical bases for adaptive refinements
• natural parallelism

2 Klaus Höllig, Jörg Hörner and Martina Pfeil

The potential of the new method, which bridges the gap between geome-
tric modeling and numerical simulation, becomes apparent from a variety of
tests for model problems in elasticity, heat conduction, and fluid flow (cf.
www.web-spline.de/examples/).

In this project we introduce and implement a minimal degree variant of the
web-method for three-dimensional boundary value problems. It is intended
primarily for simulations where computational speed is of key importance
and only moderate accuracy is required (e.g. because of missing precision of
the physical model, measurement errors, etc.). Poisson’s equation as a basic
model problem already exhibits the essential features of the new method, in
particular, the treatment of domains with complicated boundaries via a special
integration technique. The generalization to more general elliptic equations or
systems is straightforward.

In this report we first describe in section 2 the weighted linear finite el-
ement basis. Section 3 is then devoted to a preprocessing technique which
substantially accelerates the assembly of the Ritz-Galerkin system. A brief
outline of the program structure is given in section 4. Finally, we illustrate in
section 5 the performance of our algorithms.

2 Finite Element Basis

We choose scaled translates

bk = b(·/h− k), (k1, k2, k3) ∈ K = {0, . . . , 1/h}3, 1/h ∈ IN ,

of a linear box-spline b [1] to construct a minimal degree web-basis (cf. figure
1). While the underlying partition, which consists of 6 tetrahedra S per grid
cell Q = ℓh + [0, 1]3h, is more complicated than for trilinear tensor product
B-splines (the standard linear web-basis function), this slight disadvantage
is outweighed by the smaller support and the smaller number of monomial
coefficients.

Fig. 1. Support and tetrahedral partition of a linear box-spline bk

Parallel Finite Element Methods with Weighted Linear B-Splines 3

A spline on the standard domain Q∗ = (0, 1)3 is a linear combination of
scaled box-spline translates:

ph =
∑

k∈K

pkbk.

Since bk is equal to 1 at the center kh of its support and vanishes at all other
grid points k′h, the coefficients pk coincide with the grid values p(kh) of the
spline. In particular, on each tetrahedron S of the partition, ph(x) can be
computed via linear interpolation from its 4 values at the vertices of S.

We represent the simulation domain D in implicit form:

D : w(x) > 0 ,

where w is referred to as a weight function. Assuming for convenience that D
is a subset of the standard cube Q∗, an approximate representation is given
by Dh : wh(x) > 0 with

w ≈ wh =
∑

k∈K

wkbk, wk = w(kh) .

This yields a piecewise linear approximation of the boundary of order O(h2).
Functions u, which vanish on the boundary of D (homogeneous Dirichlet

boundary conditions), are approximated by weighted splines

uh = whph =
∑

k∈K

pk(whbk) =

(

∑

k∈K

wkbk

)(

∑

k∈K

pkbk

)

,

where we set pk = 0 if the support of bk lies outside of Dh. In contrast to
a standard finite element basis, consisting of hat functions (for example the

Fig. 2. Weighted linear B-spline basis for a two-dimensional domain

4 Klaus Höllig, Jörg Hörner and Martina Pfeil

box-splines bk), we use the weighted basis functions whbk, thus conforming to
boundary conditions despite the regular grid. Regardless of the shape of the
domain, the weighted spline approximation is determined by the two arrays

wk, pk, k ∈ K,

of dimension (1 + 1/h)3. Moreover, on each tetrahedron S, uh is a product of
two linear functions which interpolate the 4 × 2 values of wh and ph at the
vertices of S.

Figure 2 illustrates an analogous construction in two dimensions. The ex-
amples of several weighted bivariate linear B-splines show that the qualitative
form of the new basis is quite similar to standard elements. The modifications
appear to be relatively minor, yet the simplications are substantial. No grid
generation is required, and the data structure is extremely simple.

3 Preprocessing of Ritz-Galerkin Integrals

The matrix entries of the Ritz-Galerkin system for Poisson’s equation, which
serves as our basic model problem, are

∫

Dh

grad(whbk) grad(whbk′), k, k′ ∈ K .

These integrals are computed by summing the contributions from each grid
cell Q:

∫

Dh

. . . =
∑

Q

∫

Q∩Dh

. . . . (1)

The latter integrals are nonzero only if both, bk and bk′ , have some support
in Q, i.e., if kh and k′h are vertices of Q. Hence, we can write

∫

Q∩Dh

. . . = I(ℓ, α, α′, wh), ℓ ∈ L = {1, . . . , 1/h}3, α, α′ ∈ {0, 1}3,

where Q = ℓh + [0, 1]3h, and α = k − ℓ, α′ = k′ − ℓ.
Usually, the Ritz-Galerkin integrals are computed on run-time. However,

processing the boundary cells is time-consuming, since one has to take the
intersection pattern of the tetrahedral partition with the boundary into ac-
count. There is a simple remedy. As is illustrated in figure 3, for each cell Q,
the combinatorial type of the intersection of the tetrahedra S ⊂ Q with the
boundary of Dh is determined by the signature s of the values

Wℓ = {wℓ+γ : γ ∈ {0, 1}3}

of the weight function at the vertices of Q. Hence, there are only 28 = 256
possibilities. The different patterns partition the lattice points L into disjoint

Parallel Finite Element Methods with Weighted Linear B-Splines 5

+

−
−

+

−
−

−

Fig. 3. Intersection pattern for a boundary cell, determined by the signature
sign(wγ), γ = (0, 0, 0), (1, 0, 0), . . . , (1, 1, 1), of the weight function

sets Ls. For ℓ ∈ Ls, the integral I is a rational function of the weight function
values:

I(ℓ, α, α′, wh) = Rs,α,α′(Wℓ), ℓ ∈ Ls .

Clearly, the functions R do not depend on the shape of the domain and can,
therefore, be compiled as subroutines. This allows the complete vectorization
of the computations for combinatorially equivalent cells, cutting the assembly
time to a minimum.

Since the functions Rs,α,α′ are determined in advance, the time required
for their automatic generation is irrelevant. Hence, we can optimize the in-
struction sequences for their evaluation. To find the best (or an almost best)
procedure automatically is an interesting algebraic problem, which we are cur-
rently pursuing together with M. Clausen [2] from the University of Bonn. So
far, we are using an extended version of the K-form algorithm of J. Koch [8]
which is based on successive quadratic substitutions.

w4

0,0,0

(

2w2

0,0,0w
2

1,1,0w
3

1,1,1 + 6w4

0,0,0w1,0,0w
2

1,1,1 + . . . (107 similar terms)
)

(w0,0,0 − w1,0,0)
3 (w0,0,0 − w1,1,0)

2 (w0,0,0 − w1,0,1)
2 (w0,0,0 − w1,1,1)

2

4 substitutions of type w̃ = a/(b − c)
17 substitutions of type w̃ = a · b
4 substitutions of type w̃ = a/b

}

→ simplified instruction set

20w̃5 − 6w̃6 − w̃7 − 10w̃8 − 5w̃9 − 10w̃10 − w̃11 − 5w̃12 + 10w̃13 + 2w̃14 + 2w̃15

−2w̃16 − 8w̃17 + 4w̃18 − 2w̃19 + w̃20 + 2w̃21 + 4w̃22 + 2w̃23 + w̃24 + 2w̃25

Fig. 4. Example of a function Rs,α,α′ for Poisson’s equation and a simplified in-
struction set

6 Klaus Höllig, Jörg Hörner and Martina Pfeil

Figure 4 shows one of the 12384 = 256 × 64 expressions. We see that the
evaluation can be considerably simplified. Further simplifications are possible,
but not provided by the K-Form. Of course, given the number of expressions,
such simplified instruction sets must be generated automatically.

4 Program Description

As for conventional finite element approximations, the numerical solution of
an elliptic boundary value problem with weighted linear box-splines consists of
two steps: the assembly of the Ritz-Galerkin system and its iterative solution.
We describe each component of the algorithm in turn, considering only the
more difficult matrix assembly.

The Ritz-Galerkin matrix has a constant (generalized) band-width. Ac-
cordingly, the entry (k, k′) is denoted by

G(k, ∆k), k ∈ K, ∆k = k′ − k ∈ {−1, 0, 1}3 .

To generate the array G, we first compute the cell integrals I. In general
terms, this is accomplished by the following program segment.

for all s
for all ℓ ∈ Ls

for all α, α′ ∈ {0, 1}3

I(ℓ, α, α′, wh) = Rs,α,α′(Wℓ)
end

end
end

Summation of the cell integrals according to (1) then yields the matrix
entries, as described in the following program segment.

G = 0
for all α, α′ ∈ {0, 1}3

for all ℓ ∈ L
G(ℓ + α, α′ − α) = G(ℓ + α, α′ − α) + I(ℓ, α, α′, wh)

end
end

In addition, we set zero diagonal entries G(k, 0) equal to one, in order to
keep a simple data structure regardless of the shape of the domain. The corres-
ponding entries of the right-hand side are set to 0. This is in agreement with
the convention that the box-spline coefficients pk are zero for Dh∩supp bk = ∅.

The notation and index structure of the pseudo-code reflects the mathe-
matical description, not the FORTRAN implementation. However, it is ap-
parent that the main loops are easily vectorized.

Parallel Finite Element Methods with Weighted Linear B-Splines 7

To solve the Ritz-Galerkin system, we use a dynamic version of the
multigrid algorithm, described in [6]. The two basic components, Richard-
son smoothing and grid transfer with box-spline subdivision, trivially vector-
ize over the regular grid. In fact, the data structure of web-splines is ideally
suited for any type of iterative solver.

The simplicity of the above program fragments is deceptive – the com-
plexity of the problem must be hidden somewhere. It is contained in the sub-
routines for the functions Rs,α,α′ . The corresponding automatically generated
code (244,582 lines) constitutes with approximately 98% the major portion of
the program.

5 Implementation and Performance

As a first test, we implemented a solver for the 2-dimensional Poisson equation.
The code is written FORTAN90 with the following key routines:

• cell data: evaluation of the functions Rs,α,α′ ;
• matrix: assembly of the Ritz-Galerkin matrix;
• mg smooth: basic multigrid iteration.

The first routine, comprising the major portion of the code, is automatically
generated with the aid of a Matlab-program. It not only supplies instruc-
tion sequences for integration, but also optimizes the complexity with K-form
substitutions. Richardson’s iteration is used as a smoother, which in our ex-
periments proved to be superior to SSOR and checkerboard-SSOR.

System

Solve
Other

Total time: 2.418 s

Fig. 5. Solution and computing times for a 2-dimensional domain

8 Klaus Höllig, Jörg Hörner and Martina Pfeil

An advantage of our new meshless method is the simplicity of the boundary
treatment. Therefore, and in order to compare with automatic grid genera-
tion, we use random domains with fairly irregular boundaries. For the example
shown in figure 5, a system with more than 6 million unknowns was solved
on one processor in less than 2.5 seconds. As is typical for our B-spline based
method, the assembly time (which corresponds to grid generation and numeri-
cal integration for a standard finite element method) is cut down substantially
due to the regular grid and the use of the predefined instruction sets (routine:
cell data).

Table 1 gives more detailed information about the program performance.
We see that for all three routines the average vector length is larger than 200,
i.e. very close to the maximal length 256. As a consequence, the efficiency
is almost optimal. For the matrix assembly (routine: matrix) 7.9 Gflops are
reached. The performance of the Richardson iteration with 6.1 Gflops is also
quite good, in particular, since most of the 1204 iterations operate on coarse
grids. Using a count weighted with the grid size, the solver requires 9.684
iterations in fine grid units. This roughly corresponds to an error reduction
by a factor 0.17 per multigrid cycle.

The routines, not listed in the statistic, also vectorize well (the vector ratio
never drops below 98%); yet they contribute only a small fraction (< 14%) to
the total time.

PROG UNIT FREQ. TIME MFLOPS V.RATIO V.LEN

cell data 9 0.196 23.0 98.24 230.3
matrix 9 0.096 7905.4 99.76 245.2
mg smooth 1204 1.794 6173.1 99.40 211.8

Table 1. Statistics (ftrace) of the main routines for the two-dimensional test case
(V.RATIO = ratio of vector operations, V.LEN = average vector length)

The full potential of the new algorithm becomes apparent when considering
three-dimensional examples. In fact, the random domain, shown in figure 6,
would be nontrivial to mesh, as is necessary for a standard finite element
scheme. The performance is not quite as good as for the two-dimensional
case. While we achieve > 7.2 and > 4.6 Gflops for the routines matrix and
mg smooth, the routine cell data (here split according to the different
cell types into routines cell data k, k=001:254) does not vectorize well.
The reason is that not all of the 254 boundary intersection patterns occur
frequently enough. Of course, for smaller grid-width, the vectorization would
be close to optimal again.

It is conceivable that significant improvements of the performance are still
possible. First, our code can almost certainly be tuned further to the specific
architecture. Second, the K-form can be augmented by additional algebraic

Parallel Finite Element Methods with Weighted Linear B-Splines 9

System

Solve

Other

Total time: 13.489 s

PROG UNIT FREQUENCY TIME MFLOPS V.RATIO V.LEN

matrix 5 0.273 7210.1 99.70 124.1
mg smooth 499 3.011 4640.9 97.99 98.1
cell data 240 5 0.267 313.1 45.91 51.6
cell data 085 5 0.264 310.2 48.97 54.8

...
cell data 186 5 0.024 162.5 86.18 138.1

Fig. 6. Domain and statistics for a 3-dimensional test case

simplification tools. In fact, it is an intriguing mathematical problem to au-
tomatically determine the best evaluation sequence for the functions Rs,α,α′ .

6 Concluding Remarks

The numerical tests have confirmed that our new method is well suited for
handling complicated boundaries. Moreover, due to the regular grid and an
extremely simple data structure, the vectorization has led to a considerable
speed up of our serial implementation (factor 15 in comparison to a 2.4 GHz
AMD-CPU). The efficiency is partially also due to the idea of using predefined
instruction sets, which avoids spending time on calculating quadrature points
for boundary cells.

The generalization to variable coefficients problems and other elliptic prob-
lems, such as the Navier-Lame system of linear elasticity and eigenvalue prob-
lems for water waves, is relatively straightforward. It would also be interesting
to apply the B-spline approach to moving boundary problems and form op-
timization. In both cases, the weight function technique could prove to be
an alternative to existing methods, which require remeshing or have some
topological limitations.

10 Klaus Höllig, Jörg Hörner and Martina Pfeil

Acknowledgement: We thank Dr. U. Küster and the HLRS parallel
computing group who, with their advice and excellent support, contributed
to a considerable percentage of the Gflops mentioned above.

References

1. C. de Boor, K. Höllig, and S. Riemenschneider: Box Splines, Springer-
Verlag, New York, 1993.

2. M. Clausen, Private communication, 2007.
3. K. Höllig, Finite Element Methods with B-Splines, SIAM, 2003.
4. K. Höllig, U. Reif, and J. Wipper: Weighted extended B-spline approxi-

mation of Dirichlet problems, SIAM J. Numer. Anal. 39 (2001), 442–462.
5. K. Höllig, U. Reif, and J. Wipper: Verfahren zur Erhöhung

der Leistungsfähigkeit einer Computereinrichtung bei Finite-Elemente-

Simulationen und eine solche Computereinrichtung, Deutsches Patent DE
100 23 377 C2 (2003).

6. K. Höllig, U. Reif, and J. Wipper: Multigrid methods with web-splines,

Numer. Math. 91 (2002), 237–256.
7. J. Hörner: MIND: Multiple integration over NURBS domains, 2007.
8. J. Koch: Subdivision-Algorithmen zur Lösung polynomialer Gleichungssys-

teme, Master’s Thesis, University of Stuttgart (1991)
9. Finite Element Approximation with WEB-Splines (Slide collection):

http://www.web-spline.de/publications/slide collection.pdf

