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Model problem

On a bounded domain

we consider Poisson’s equation

with Dirichlet boundary conditions

Ω ⊂ IRm

−∆u = f in Ω

u = 0 on ∂Ω.

Ω
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Weak formulation:∫
Ω

∇u∇ψ =
∫

Ω

fψ, ∀ ψ ∈ H1
0 .

An approximation in a finite dimensional subspace IB = span{Bi, i ∈ I}

IB 3 uh =
∑
i∈I

aiBi ≈ u ∈ H1
0

is obtained by solving the Galerkin system∑
i∈I

∫
Ω

∇Bk∇Bi ai =
∫

Ω

fBk, k ∈ I

∑
i∈I

gk,i ai = fk, k ∈ I

GA = F
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Objectives:

❏ convergence uh→ u as h→ 0fast convergence uh→ u as h→ 0

❏ respect boundary conditions

❏ condGh ∼ h−2

❏ low dimensional subspace

❏ efficiency, i.e. number of iterations ∼ 1/h or even ∼ 1

❏ practicability
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Standard FE-techniques

mesh-based:

❏ hat functions

❏ macro elements (Clough-Tocher, Agyris, Schumaker)

meshless:

❏ radial basis functions

❏ wavelets

❏ hp elements
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Hat functions:

❏ Based on triangulation (or quadrangulation) of Ω.

❏ 2d-meshing expensive.

Figures by Dietrich Nowottny
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Hat functions:

❏ Based on triangulation of Ω.

❏ 2d-meshing expensive.

❏ 3d-meshing very expensive.

Figures by Alexander Fuchs
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Hat functions:

❏ Based on triangulation of Ω.

❏ 2d-meshing expensive.

❏ 3d-meshing very expensive.

❏ Slow convergence,

‖u− uh‖0 ∼ h2.

❏ High dimensional subspaces,

dim IB ∼ ‖u− uh‖−m/20 .

❏ condGh ∼ h−2, iff triangulation is uniform.

❏ Huge amount of code implemented and optimized.
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Meshless methods:

unstructured structured

Main difficulties:

• Obey boundary conditions. • Obey boundary conditions.

• Control condition number.
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Babus̆ka proposes:

❏ Lagrange multiplier method

• saddle point problem

• indefinite system

• LBB condition

❏ Penalty method

• minimize energy + penalty on boundary deviation

• balance of terms very delicate

”Both methods have their adherents, . . . , none, however, has gained

universal popularity”(Bochev & Gunzberger ’98).
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Uniform b-splines

The tensor product b-spline basis of order n with knots hZZm is

{bk : k ∈ ZZm}, supp bk = h(k + [0, n]m).

Potential benefit:

❏ No mesh generation required.

❏ Fast convergence,

‖u− uh‖0 ∼ hn.

❏ Low (lowest) dimensional subspace

dim IB ∼ ‖u− uh‖−m/n0 .
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Problems:

❏ Boundary conditions:

• If a spline is zero on the boundary of Ω, then it vanishes on all

intersecting grid cells (in general). This implies a complete loss

of approximation power.

• Apply Babus̆ka methods?
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Problems (contd.):

❏ Condition number:

• b-splines with small support in Ω may lead to excessively large

condition numbers.

• Leaving out outer b-splines reduces approximation power.

• Just ignore it (brute force)?
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Weighted extended b-splines (web-splines)

Partition relevant indices K := {k ∈ ZZm : supp bk ∩ Ω 6= ∅}:

The inner b-splines with indices

I ⊂ K

have at least one grid cell in

their support contained in Ω.

The outer b-splines with indices

J = K\I

have no grid cell in their support

contained in Ω .
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Extension:
In order to stabilize the basis, the outer b-splines are no longer considered to be

independend. Instead, they are coupled with inner b-splines,

Bi = bi +
∑
j∈J

ei,jbj, i ∈ I.

❏ Bi is an extended b-spline, i.e. suppBi ⊃ supp bi.

❏ Local extension yields uniformly bounded support,

ei,j = 0 for ‖i− j‖ � 1 ⇒ | suppBi| � h.

Moreover, most b-splines remain unchanged.

❏ Choose coefficients ei,j in such a way that all polynomials of order n remain in

the span of the extended B-Splines Bi using Marsden’s identity,∑
k∈K

p(k)bk ∈ IPn(Ω) iff p ∈ IPn(K).
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For any outer index j ∈ J let

• I(j) ⊂ I be a closest inner array
of dimension nm,

• J(i) = {j ∈ J : i ∈ I(j)} be the
dual index set of I(j).

• Li, i ∈ I(j), be the Lagrange po-
lynomials associated with I(j).
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For any outer index j ∈ J let

• I(j) ⊂ I be a closest inner array
of dimension nm,

• J(i) = {j ∈ J : i ∈ I(j)} be the
dual index set of I(j).

• Li, i ∈ I(j), be the Lagrange po-
lynomials associated with I(j).

Choosing the coefficients

ei,j =

{
Li(j) for i ∈ I(j)
0 else

yields the wanted representation∑
i∈I

p(i)Bi =
∑
k∈K

p(k)bk.
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Weighting:

The incorporation of zero boundary conditions is amazingly simple.

Let w : Ω→ IR+
0 be a smooth function equivalent to the boundary

distance, i.e.

w(x)
dist(x, ∂Ω)

� 1,
dist(x, ∂Ω)

w(x)
� 1,

and in particular

w = 0 exactly on ∂Ω.

Multiplying the extended b-splines Bi by the weight function w

yields a basis which satisfies the boundary condition.
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Definition:

The web-splines Bi are defined by

Bi =
w

w(xi)

(
bi +

∑
j∈J(i)

ei,jbj

)
, i ∈ I,

where x(i) is the center of a grid cell in supp bi ∩ Ω.

The web-splines span the web-space

IB := span{Bi : i ∈ I}.
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Stability

For λk, k ∈ I, a family of dual functionals for bi supported on Ω let

Λk =
w(xk)
w

λk.

Theorem 1: For i, k ∈ I, the dual functionals Λk and the web-

splines Bi are uniformly bounded in L2 with respect to the grid

width h, and biorthogonal,

‖Bi‖0 � 1, ‖Λk‖0 � 1,
∫

Ω

BiΛk = δi,k.

Theorem 2: The web-basis is stable with respect to the L2-norm,∥∥∥∑
i∈I

aiBi

∥∥∥
0
∼ ‖A‖ .
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Theorem 3: The web-basis satisfies∥∥∥∑
i∈I

aiBi

∥∥∥
r
� h−r ‖A‖.

Theorem 4: The spectrum of the Galerkin matrix Gh is bounded by

1 � %(Gh) � h−2.

Theorem 5: The condition number of the Galerkin matrix is

bounded by

condGh � h−2.
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Approximation order

Theorem 6: Let u ∈ H1
0 be a smooth function. Then

‖u− vh‖r � hn−r, vh = Pu :=
∑
i∈I

(∫
uΛi
)
Bi.

Theorem 7: Let u be a smooth solution of the model problem and

uh ∈ IB a finite element approximation obtained by solving the

Galerkin system. Then

‖u− uh‖r � hn−r.
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Multigrid

The performance of cg-solvers (∼ h−1 iterations) can be improved

by multigrid methods. These require

❏ a smoothing operator S, e.g. Richardson’s method

S : A→ A+ λ−1
max(F −GA).

❏ a grid transfer operator P : IB2h→ IBh,

P : A2h→ Ah = PA2h

with matrix entries

p`,i =
w(xh` )
w(x2h

i )

(
c`−2i +

∑
j∈J2h(i)

e2h
i,jc`−2j

)
.
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Multigrid Algorithm U →W = M(U,F, h):

V = SαU % α smoothing iterations

F̃ = P t(F −GV ) % residual on coarse grid

if 2h = hmax %

W̃ = G̃−1F̃ % direct solution on coarsest grid

else %

W̃ = Mβ(0, F̃ , 2h) % β multigrid steps

end %

W = V + PW̃ % update on fine grid

Theorem 8: For β = 2 and α sufficiently large (W-cycle), the

multigrid algorithm converges after O(1) iterations. Thus, the

complexity for solving the FE-problem reduces to O(dim IB).
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Extensions and further development

❏ The method potentially applies to many FE problems.

❏ Hierarchical b-splines can be used for local and adaptive grid

refinement.

❏ The weight function is still subject to optimization.

❏ Extend the method to non-smooth problems

• by local refinement,

• by assymptotic expansion.

❏ Implementation (3d, multigrid) in progress.
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Conclusion

The web-spline method is a promising new FE technique providing

the following features:

❏ Wide range of applicability.

❏ No mesh generation required.

❏ High accuracy approximation with relatively few coefficients.

❏ O(1)-convergence with multigrid.

❏ Based on industrial standard (b-splines).

❏ Easy to implement (3d integration subtle).


