Web-Spline Approximation of Elliptic Boundary Value Problems

Ulrich Reif Darmstadt University of Technology

Klaus Höllig Joachim Wipper University of Stuttgart

Presented by U. Reif at the the Fifth International Conference on Mathematical Methods for Curves and Surfaces, Oslo, July 4, 2000.

Overview

- Model problem
- Standard FE-techniques
- Uniform b-splines
- Weighted extended b-splines
 - Stability
 - Approximation order
- Examples
- Multigrid
- Extensions and further development
- Conclusion

Model problem

On a bounded domain we consider Poisson's equation $-\Delta u = f$ in Ω with Dirichlet boundary conditions u = 0 on $\partial \Omega$.

 $\Omega \subset \mathrm{I\!R}^m$

Weak formulation:

$$\int_{\Omega} \nabla u \nabla \psi = \int_{\Omega} f \psi, \quad \forall \ \psi \in H_0^1.$$

An approximation in a finite dimensional subspace $\mathbb{IB} = \operatorname{span}\{B_i, i \in I\}$

$$\mathbb{B} \ni u_h = \sum_{i \in I} a_i B_i \approx u \in H_0^1$$

is obtained by solving the Galerkin system

$$\sum_{i \in I} \int_{\Omega} \nabla B_k \nabla B_i a_i = \int_{\Omega} f B_k, \quad k \in I$$
$$\sum_{i \in I} g_{k,i} a_i = f_k, \quad k \in I$$
$$GA = F$$

Objectives:

- \Box fast convergence $u_h \rightarrow u$ as $h \rightarrow 0$
- respect boundary conditions
- \Box cond $G_h \sim h^{-2}$
- Iow dimensional subspace
- \Box efficiency, i.e. number of iterations $\sim 1/h$ or even ~ 1
- practicability

Standard FE-techniques

mesh-based:

hat functions

macro elements (Clough-Tocher, Agyris, Schumaker)

meshless:

- radial basis functions
- wavelets

□ hp elements

Hat functions:

Based on triangulation (or quadrangulation) of Ω. 2d-meshing expensive.

Hat functions:

- \Box Based on triangulation of $\Omega.$
- 2d-meshing expensive.
- □ 3d-meshing very expensive.

Hat functions:

- \Box Based on triangulation of Ω .
- 2d-meshing expensive.
- □ 3d-meshing very expensive.
- □ Slow convergence,

$$\|u-u_h\|_0 \sim h^2.$$

High dimensional subspaces,

$$\dim \mathbb{B} \sim \|u - u_h\|_0^{-m/2}.$$

□ cond $G_h \sim h^{-2}$, iff triangulation is uniform. □ Huge amount of code implemented and optimized.

Meshless methods:

unstructured

structured

Main difficulties:

• Obey boundary conditions.

Obey boundary conditions.Control condition number.

Babuška proposes:

Lagrange multiplier method

- saddle point problem
- indefinite system
- LBB condition

Penalty method

minimize energy + penalty on boundary deviation

balance of terms very delicate

"Both methods have their adherents, ..., none, however, has gained universal popularity" (Bochev & Gunzberger '98).

Uniform b-splines

The tensor product b-spline basis of order n with knots $h\mathbb{Z}^m$ is

 $\{b_k : k \in \mathbb{Z}^m\}, \quad \text{supp}\, b_k = h(k + [0, n]^m).$

Potential benefit:

No mesh generation required.
 Fast convergence,

 $\|u-u_h\|_0 \sim h^n.$

Low (lowest) dimensional subspace

 $\dim \mathbb{B} \sim \|u - u_h\|_0^{-m/n}.$

Problems:

Boundary conditions:

 If a spline is zero on the boundary of Ω, then it vanishes on all intersecting grid cells (in general). This implies a complete loss of approximation power.

• Apply Babuška methods?

Problems (contd.):

□ Condition number:

- b-splines with small support in Ω may lead to excessively large condition numbers.
- Leaving out outer b-splines reduces approximation power.
- Just ignore it (brute force)?

Weighted extended b-splines (web-splines) Partition relevant indices $K := \{k \in \mathbb{Z}^m : \operatorname{supp} b_k \cap \Omega \neq \emptyset\}$: The inner b-splines with indices $I \subset K$ have at least one grid cell in their support contained in Ω . The outer b-splines with indices $J = K \setminus I$ have no grid cell in their support contained in Ω .

Extension:

In order to stabilize the basis, the outer b-splines are no longer considered to be independend. Instead, they are coupled with inner b-splines,

$$B_i = b_i + \sum_{j \in J} e_{i,j} b_j, \quad i \in I.$$

 \Box B_i is an extended b-spline, i.e. $\operatorname{supp} B_i \supset \operatorname{supp} b_i$.

Local extension yields uniformly bounded support,

$$e_{i,j} = 0$$
 for $||i - j|| \geq 1 \Rightarrow |\operatorname{supp} B_i| \leq h$.

Moreover, most b-splines remain unchanged.

□ Choose coefficients $e_{i,j}$ in such a way that all polynomials of order n remain in the span of the extended B-Splines B_i using Marsden's identity,

$$\sum_{k \in K} p(k)b_k \in \mathbb{P}_n(\Omega) \quad \text{iff} \quad p \in \mathbb{P}_n(K).$$

For any outer index $j \in J$ let

- $I(j) \subset I$ be a closest inner array of dimension n^m ,
- $J(i) = \{j \in J : i \in I(j)\}$ be the dual index set of I(j).
- $L_i, i \in I(j)$, be the Lagrange polynomials associated with I(j).

For any outer index $j \in J$ let

- $I(j) \subset I$ be a closest inner array of dimension n^m ,
- $J(i) = \{j \in J : i \in I(j)\}$ be the dual index set of I(j).
- $L_i, i \in I(j)$, be the Lagrange polynomials associated with I(j).

Choosing the coefficients

$$e_{i,j} = \begin{cases} L_i(j) & \text{for } i \in I(j) \\ 0 & \text{else} \end{cases}$$

yields the wanted representation

$$\sum_{i \in I} p(i)B_i = \sum_{k \in K} p(k)b_k.$$

Weighting:

The incorporation of zero boundary conditions is amazingly simple. Let $w: \Omega \to \mathbb{R}_0^+$ be a smooth function equivalent to the boundary distance, i.e.

$$\frac{w(x)}{\operatorname{dist}(x,\partial\Omega)} \leq 1, \quad \frac{\operatorname{dist}(x,\partial\Omega)}{w(x)} \leq 1,$$

and in particular

w = 0 exactly on $\partial \Omega$.

Multiplying the extended b-splines B_i by the weight function w yields a basis which satisfies the boundary condition.

Stability

For $\lambda_k, k \in I$, a family of dual functionals for b_i supported on Ω let

$$\Lambda_k = \frac{w(x_k)}{w} \lambda_k.$$

Theorem 1: For $i, k \in I$, the dual functionals Λ_k and the websplines B_i are uniformly bounded in L_2 with respect to the grid width h, and biorthogonal,

$$||B_i||_0 \leq 1, \quad ||\Lambda_k||_0 \leq 1, \quad \int_{\Omega} B_i \Lambda_k = \delta_{i,k}.$$

Theorem 2: The web-basis is stable with respect to the L_2 -norm,

$$\left\|\sum_{i\in I}a_iB_i\right\|_0\sim \|A\|\ .$$

Theorem 3: The web-basis satisfies

$$\left\|\sum_{i\in I}a_iB_i\right\|_r \preceq h^{-r} \|A\|.$$

Theorem 4: The spectrum of the Galerkin matrix G_h is bounded by $1 \leq \varrho(G_h) \leq h^{-2}.$

Theorem 5: The condition number of the Galerkin matrix is bounded by

 $\operatorname{cond} G_h \preceq h^{-2}.$

Approximation order

Theorem 6: Let $u \in H_0^1$ be a smooth function. Then

$$||u - v_h||_r \leq h^{n-r}, \quad v_h = \mathcal{P}u := \sum_{i \in I} (\int u \Lambda_i) B_i.$$

Theorem 7: Let u be a smooth solution of the model problem and $u_h \in \mathbb{B}$ a finite element approximation obtained by solving the Galerkin system. Then

$$||u-u_h||_r \preceq h^{n-r}.$$

Multigrid

The performance of cg-solvers ($\sim h^{-1}$ iterations) can be improved by multigrid methods. These require

 \Box a smoothing operator S, e.g. Richardson's method

 $S: A \to A + \lambda_{\max}^{-1}(F - GA).$

 \Box a grid transfer operator $\mathcal{P}: {\rm I\!B}^{2h}
ightarrow {
m I\!B}^h$,

$$\mathcal{P}: A^{2h} \to A^h = PA^{2h}$$

with matrix entries

$$p_{\ell,i} = \frac{w(x_{\ell}^{h})}{w(x_{i}^{2h})} \left(c_{\ell-2i} + \sum_{j \in J^{2h}(i)} e_{i,j}^{2h} c_{\ell-2j} \right).$$

Multigrid Algorithm $U \rightarrow W = M(U, F, h)$:

$$V = S^{\alpha}U$$

$$\widetilde{F} = P^{t}(F - GV)$$
if $2h = h_{\max}$

$$\widetilde{W} = \widetilde{G}^{-1}\widetilde{F}$$
else
$$\widetilde{W} = M^{\beta}(0, \widetilde{F}, 2h)$$
end
$$W = V + P\widetilde{W}$$

% α smoothing iterations
% residual on coarse grid
%
% direct solution on coarsest grid
%
% β multigrid steps
%
% update on fine grid

Theorem 8: For $\beta = 2$ and α sufficiently large (*W*-cycle), the multigrid algorithm converges after O(1) iterations. Thus, the complexity for solving the FE-problem reduces to $O(\dim \mathbb{B})$.

Extensions and further development

The method potentially applies to many FE problems.

- Hierarchical b-splines can be used for local and adaptive grid refinement.
- The weight function is still subject to optimization.
- Extend the method to non-smooth problems
 - by local refinement,
 - by assymptotic expansion.

Implementation (3d, multigrid) in progress.

Conclusion

The web-spline method is a promising new FE technique providing the following features:

- □ Wide range of applicability.
- No mesh generation required.
- High accuracy approximation with relatively few coefficients.
- \bigcirc O(1)-convergence with multigrid.
- Based on industrial standard (b-splines).
- Easy to implement (3d integration subtle).