The WEB-Method

K. Höllig, U. Reif, and J. Wipper

Universität Stuttgart

Technische Universität Darmstadt

http://www.web-spline.de

History of Finite Elements and Splines

Ritz-Galerkin Method

minimize energy subject to boundary conditions

$$Q(u) = \frac{1}{2}a(u, u) - \lambda(u) \rightarrow \min, \quad u \in \mathcal{B}$$

finite dimensional approximation

$$u \approx u_h = \sum_{i \in I} c_i B_i$$

with B_i spanning a subspace $\mathcal{B}_h \subset \mathcal{B}$

Ritz-Galerkin system GC = F

$$g_{i,i'} = a(B_i, B_{i'}), \quad f_i = \lambda(B_i)$$

Model Problem

Poisson equation with Dirichlet boundary conditions

$$-\Delta u = f \text{ in } D, \qquad u = 0 \text{ on } \partial D$$

variational formulation

$$a(u,u) = \frac{1}{2} \int_D |\operatorname{grad} u|^2, \qquad \lambda(u) = \int_D fu$$

with $u \in \mathcal{B} = \{u : \text{ grad } u \text{ square integrable}, u_{|\partial D} = 0\}$

Hat-Functions

associated with inner nodes x_i of a triangular mesh

drawbacks:

- time consuming mesh generation
- large number of parameters for high degree elements
- inaccurate boundary approximation
- low smoothness

Almost Regular Planar Triangulations

generated with the ART-Algorithm (courtesy of IVM Fuchs GmbH)

Almost Regular Triangulations of Solids

generated with the ART-Algorithm (courtesy of IVM Fuchs GmbH)

B-Splines as Finite Elements

difficulties

- violation of boundary conditions
- instability due to small support

Weight Function

function w, vanishing on $\Gamma\subseteq\partial D$ with order $\gamma>0$

 $w(x) \asymp \operatorname{dist}(x, \Gamma)^{\gamma}$

weighted B-splines satisfy boundary conditions

 $wb_k \in \mathcal{B}$

Classification and Extension

relevant, inner and outer B-splines: $K = I \cup J$

linear combinations maintain stability and accuracy

$$b_i \longrightarrow b_i + \sum_j e_{i,j} b_j$$

Weighted Extended B-Splines

WEB-spline

$$B_{i} = \frac{w}{w(x_{i})} \left(b_{i} + \sum_{j \in J(i)} e_{i,j} b_{j} \right)$$
$$= w \sum_{k \in K} \tilde{e}_{i,k} b_{k}$$

- weight function vanishes on $\Gamma \rightarrow$ boundary condition
- support contains grid cell $Q_i \ni x_i \rightarrow \text{stability}$
- linear combinations contain weighted polynomials \rightarrow accuracy

Properties of WEB-Splines

results for WEB-splines with smooth weight function of order 1 on a smooth domain

• stability in $L_2(D)$:

$$h^{m/2}\left(\sum_{i}|c_{i}|^{2}\right)^{1/2} \asymp \left\|\sum_{i}c_{i}B_{i}\right\|_{0},$$

• approximation order for the Sobolev space $H_0^1(D) \cap H^k(D)$:

$$||u - u_h||_{\ell} \leq h^{k-\ell} ||u||_k, \quad \ell < k \leq n+1$$

• multigrid convergence for the model problem $-\Delta u = f$:

solution time $\sim \dim \mathcal{B}_h$

Convergence Rates

WEB-spline approximation of a model problem with analytic solution $-\Delta u = f$ in D, u = 0 on ∂D

 L_2 error and rate (left), H^1 error and rate (right), $h = 2^{-1}, \ldots, 2^{-6}$

Performance of Multigrid

results of the dynamic multigrid solver (dmg) and a standard ssor preconditioned conjugate gradient solver (pcg) to achieve a residual norm < 1e-10

h	dim \mathcal{B}_h	pcg iter	pcg rate	dmg iter	dmg rate	pcg/dmg time
2^{-1}	966	19	0.28	60.75	0.67	0.67
2 ⁻²	3696	32	0.48	32.31	0.49	1.89
2^{-3}	14383	61	0.68	29.31	0.45	3.72
2 ⁻⁴	56793	120	0.82	24.33	0.38	8.70
2 ⁻⁵	225593	239	0.91	22.33	0.36	19.40
2 ⁻⁶	899281	476	0.95	20.33	0.32	41.76

Linear Elasticity

displacement:

$$(u_1, u_2, u_3) \in \left(H^1_{\Gamma}\right)^3$$

strain tensor:

$$\varepsilon_{k,l} = \frac{1}{2} \left(\partial_k u_\ell + \partial_\ell u_k \right)$$

stress tensor:

$$\sigma_{k,l} = \lambda(\operatorname{trace} \varepsilon) \delta_{k,l} + 2\mu \varepsilon_{k,l}$$

variational formulation:

$$a(u,v) = \int_{D} \sigma : \varepsilon$$
$$\lambda(v) = \int_{D} fv + \int_{\partial D \setminus \Gamma} gv$$

Stone Table

circular table under gravital force

displacement and maximum principle stress were computed using websplines of degree 2 on a grid consisting of 53x53x30 cubes

Deformation of Thin Shells

variational formulation:

$$f(v) = \int_{S} p v , \quad a(u,v) = \int_{S} e E_{S}^{ijkl} \left(\gamma_{ij}(u) \gamma_{kl}(v) + \frac{e^{2}}{12} \varrho_{ij}(u) \varrho_{kl}(v) \right)$$

strain tensor:

$$\gamma_{ij} = \frac{1}{2} \left(v_{i,j} + v_{j,i} \right) + \Gamma_{ij}^k v_k - \beta_{ij} v_3$$

change of curvature tensor:

Summary

WEB-splines combine advantages of B-splines and standard finite elements

- no mesh generation
- high accuracy
- one parameter per grid point
- arbitrary choice of order and smoothness
- adaptive refinement via subdivision
- simple regular data structure
- efficient algorithms
- optimal multigrid solvers

Publications

